Statistical properties of aerosol-cloud-precipitation interactions in South America

نویسنده

  • T. A. Jones
چکیده

Given the complex interaction between aerosol, cloud, and atmospheric properties, it is difficult to extract their individual effects to observed rainfall amount. This research uses principle component analysis (PCA) that combines Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products, NCEP Reanalysis atmospheric products, and rainrate estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to assess if aerosols affect warm rain processes. Data collected during September 2006 over the Amazon basin in South America during the biomass-burning season are used. The goal of this research is to combine these observations into a smaller number of variables through PCA with each new variable having a unique physical interpretation. In particular, we are concerned with PC variables whose weightings include aerosol optical thickness (AOT), as these may be an indicator of aerosol indirect effects. If they are indeed occurring, then PC values that include AOT should change as a function of rainrate. To emphasize the advantage of PCA, changes in aerosol, cloud, and atmospheric observations are compared to rainrate. Comparing no-rain, rain, and heavy rain only (>5 mm h−1) samples, we find that cloud thicknesses, humidity, and upward motion are all greater during rain and heavy rain conditions. However, no statistically significant difference in AOT exists between each sample, indicating that atmospheric conditions are more important to rainfall than aerosol concentrations as expected. If aerosols are affecting warm process clouds, it would be expected that stratiform precipitation would decrease as a function increasing aerosol concentration through either Twomey and/or semidirect effects. PCA extracts the latter signal in a variable labeled PC2, which explains 15% of the total variance and is Correspondence to: T. A. Jones ([email protected]) second in importance the variable (PC1) containing the broad atmospheric conditions. PC2 contains weightings showing that AOT is inversely proportional to low-level humidity and cloud optical thickness. Increasing AOT is also positively correlated with increasing low-level instability due to aerosol absorption. The nature of these weightings is strongly suggestive that PC2 is an indicator of the semi-direct effect with larger values associated with lower rainfall rates. PC weightings consistent with the Twomey effect (an anti-correlation between AOT and cloud droplet effective radius) are only present in higher order PC variables that explain less than 1% of the total variance, and do not vary significantly as a function of rainrate. If the Twomey effect is occurring, it is highly non-linear and/or being overshadowed by other processes. Using the raw variables alone, these determinations could not be made; thus, we are able to show the advantage of using advanced statistical techniques such as PCA for analysis of aerosols impacts on precipitation in South America.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol-cloud-precipitation system as a predator-prey problem.

We show that the aerosol-cloud-precipitation system exhibits characteristics of the predator-prey problem in the field of population dynamics. Both a detailed large eddy simulation of the dynamics and microphysics of a precipitating shallow boundary layer cloud system and a simpler model built upon basic physical principles, reproduce predator-prey behavior with rain acting as the predator and ...

متن کامل

Aerosol radiative effects on mesoscale cloud–precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign

The online model, Weather Research and Forecasting Model with Chemistry (WRF-Chem) is employed to interpret the effects of aerosol-cloud-precipitation interaction on mesoscale meteorological fields over Northeast Asia during the Megacity Air Pollution Study-Seoul (MAPS-Seoul) 2015 campaign. The MAPS-Seoul campaign is a pre-campaign of the Korea-United States Air Quality (KORUS-AQ) campaign cond...

متن کامل

New approaches to quantifying aerosol influence on the cloud radiative effect.

The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, tr...

متن کامل

A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds

Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique ...

متن کامل

REVIEW Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges

Over the past decade, the number of studies that investigate aerosol–cloud interactions has increased considerably. Although tremendous progress has been made to improve the understanding of basic physical mechanisms of aerosol–cloud interactions and reduce their uncertainties in climate forcing, there is still poor understanding of 1) some of the mechanisms that interact with each other over m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010